Electrical Engineer
   HOME

TheInfoList



OR:

Electrical engineering is an
engineering Engineering is the use of scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings. The discipline of engineering encompasses a broad range of more speciali ...
discipline concerned with the study, design, and application of equipment, devices, and systems which use
electricity Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as describe ...
,
electronics The field of electronics is a branch of physics and electrical engineering that deals with the emission, behaviour and effects of electrons using electronic devices. Electronics uses active devices to control electron flow by amplification ...
, and
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions o ...
. It emerged as an identifiable occupation in the latter half of the 19th century after
commercialization Commercialization or commercialisation is the process of introducing a new product or production method into commerce—making it available on the market. The term often connotes especially entry into the mass market (as opposed to entry into ...
of the electric telegraph, the telephone, and
electrical power Electric power is the rate at which electrical energy is transferred by an electric circuit. The SI unit of power is the watt, one joule per second. Standard prefixes apply to watts as with other SI units: thousands, millions and billion ...
generation, distribution, and use. Electrical engineering is now divided into a wide range of different fields, including computer engineering,
systems engineering Systems engineering is an interdisciplinary field of engineering and engineering management that focuses on how to design, integrate, and manage complex systems over their life cycles. At its core, systems engineering utilizes systems thinki ...
, power engineering, telecommunications,
radio-frequency engineering Radio-frequency (RF) engineering is a subset of electronic engineering involving the application of transmission line, waveguide, antenna and electromagnetic field principles to the design and application of devices that produce or use sign ...
,
signal processing Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing '' signals'', such as sound, images, and scientific measurements. Signal processing techniques are used to optimize transmissions, ...
, instrumentation, photovoltaic cells,
electronics The field of electronics is a branch of physics and electrical engineering that deals with the emission, behaviour and effects of electrons using electronic devices. Electronics uses active devices to control electron flow by amplification ...
, and
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultrav ...
and photonics. Many of these disciplines overlap with other engineering branches, spanning a huge number of specializations including hardware engineering, power electronics, electromagnetics and waves, microwave engineering,
nanotechnology Nanotechnology, also shortened to nanotech, is the use of matter on an atomic, molecular, and supramolecular scale for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal ...
,
electrochemistry Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference, as a measurable and quantitative phenomenon, and identifiable chemical change, with the potential difference as an out ...
, renewable energies, mechatronics/control, and electrical materials science. Electrical engineers typically hold a degree in electrical engineering or electronic engineering. Practising engineers may have
professional certification Professional certification, trade certification, or professional designation, often called simply ''certification'' or ''qualification'', is a designation earned by a person to assure qualification to perform a job or task. Not all certifications ...
and be members of a professional body or an international standards organization. These include the
International Electrotechnical Commission The International Electrotechnical Commission (IEC; in French: ''Commission électrotechnique internationale'') is an international standards organization that prepares and publishes international standards for all electrical, electronic and ...
(IEC), the
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers (IEEE) is a 501(c)(3) professional association for electronic engineering and electrical engineering (and associated disciplines) with its corporate office in New York City and its operation ...
(IEEE) and the Institution of Engineering and Technology (IET) ''(formerly the IEE)''. Electrical engineers work in a very wide range of industries and the skills required are likewise variable. These range from circuit theory to the management skills of a
project manager A project manager is a professional in the field of project management. Project managers have the responsibility of the planning, procurement and execution of a project, in any undertaking that has a defined scope, defined start and a defined ...
. The tools and equipment that an individual engineer may need are similarly variable, ranging from a simple
voltmeter A voltmeter is an instrument used for measuring electric potential difference between two points in an electric circuit. It is connected in parallel. It usually has a high resistance so that it takes negligible current from the circuit. ...
to sophisticated design and manufacturing software.


History

Electricity has been a subject of scientific interest since at least the early-17th-century. William Gilbert was a prominent early electrical scientist, and was the first to draw a clear distinction between
magnetism Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particles ...
and static electricity. He is credited with establishing the term "electricity". He also designed the versorium: a device that detects the presence of statically charged objects. In 1762 Swedish professor
Johan Wilcke Johan Carl Wilcke was a Swedish physicist. Biography Wilcke was born in Wismar, son of a clergyman who in 1739 was appointed second pastor of the German Church in Stockholm. He went to the German school in Stockholm and enrolled at the Univers ...
invented a device later named electrophorus that produced a static electric charge. By 1800
Alessandro Volta Alessandro Giuseppe Antonio Anastasio Volta (, ; 18 February 1745 – 5 March 1827) was an Italian physicist, chemist and lay Catholic who was a pioneer of electricity and power who is credited as the inventor of the electric battery and th ...
had developed the voltaic pile, a forerunner of the electric battery.


19th century

In the 19th century, research into the subject started to intensify. Notable developments in this century include the work of
Hans Christian Ørsted Hans Christian Ørsted ( , ; often rendered Oersted in English; 14 August 17779 March 1851) was a Danish physicist and chemist who discovered that electric currents create magnetic fields, which was the first connection found between electricit ...
who discovered in 1820 that an electric current produces a magnetic field that will deflect a compass needle, of William Sturgeon who, in 1825 invented the
electromagnet An electromagnet is a type of magnet in which the magnetic field is produced by an electric current. Electromagnets usually consist of wire wound into a coil. A current through the wire creates a magnetic field which is concentrated in ...
, of Joseph Henry and
Edward Davy Edward Davy (16 June 1806 – 26 January 1885) was an English physician, scientist, and inventor who played a prominent role in the development of telegraphy, and invented an electric relay. Davy was born in Ottery St Mary, Devonshire, England ...
who invented the
electrical relay A relay Electromechanical relay schematic showing a control coil, four pairs of normally open and one pair of normally closed contacts An automotive-style miniature relay with the dust cover taken off A relay is an electrically operated switch ...
in 1835, of Georg Ohm, who in 1827 quantified the relationship between the
electric current An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The movi ...
and potential difference in a conductor, of
Michael Faraday Michael Faraday (; 22 September 1791 – 25 August 1867) was an English scientist who contributed to the study of electromagnetism and electrochemistry. His main discoveries include the principles underlying electromagnetic inducti ...
(the discoverer of
electromagnetic induction Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Cle ...
in 1831), and of
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and ligh ...
, who in 1873 published a unified
theory A theory is a rational type of abstract thinking about a phenomenon, or the results of such thinking. The process of contemplative and rational thinking is often associated with such processes as observational study or research. Theories may ...
of electricity and
magnetism Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particles ...
in his treatise ''Electricity and Magnetism''. In 1782, Georges-Louis Le Sage developed and presented in
Berlin Berlin ( , ) is the capital and largest city of Germany by both area and population. Its 3.7 million inhabitants make it the European Union's most populous city, according to population within city limits. One of Germany's sixteen constitu ...
probably the world's first form of electric telegraphy, using 24 different wires, one for each letter of the alphabet. This telegraph connected two rooms. It was an electrostatic telegraph that moved gold leaf through electrical conduction. In 1795, Francisco Salva Campillo proposed an electrostatic telegraph system. Between 1803 and 1804, he worked on electrical telegraphy and in 1804, he presented his report at the Royal Academy of Natural Sciences and Arts of Barcelona. Salva's electrolyte telegraph system was very innovative though it was greatly influenced by and based upon two new discoveries made in Europe in 1800 – Alessandro Volta's electric battery for generating an electric current and William Nicholson and Anthony Carlyle's electrolysis of water.
Electrical telegraph Electrical telegraphs were point-to-point text messaging systems, primarily used from the 1840s until the late 20th century. It was the first electrical telecommunications system and the most widely used of a number of early messaging systems ...
y may be considered the first example of electrical engineering. Electrical engineering became a profession in the later 19th century. Practitioners had created a global electric telegraph network, and the first professional electrical engineering institutions were founded in the UK and USA to support the new discipline. Francis Ronalds created an electric telegraph system in 1816 and documented his vision of how the world could be transformed by electricity. Over 50 years later, he joined the new Society of Telegraph Engineers (soon to be renamed the Institution of Electrical Engineers) where he was regarded by other members as the first of their cohort. By the end of the 19th century, the world had been forever changed by the rapid communication made possible by the engineering development of land-lines, submarine cables, and, from about 1890, wireless telegraphy. Practical applications and advances in such fields created an increasing need for standardised units of measure. They led to the international standardization of the units
volt The volt (symbol: V) is the unit of electric potential, electric potential difference (voltage), and electromotive force in the International System of Units (SI). It is named after the Italian physicist Alessandro Volta (1745–1827). Defin ...
,
ampere The ampere (, ; symbol: A), often shortened to amp,SI supports only the use of symbols and deprecates the use of abbreviations for units. is the unit of electric current in the International System of Units (SI). One ampere is equal to elect ...
,
coulomb The coulomb (symbol: C) is the unit of electric charge in the International System of Units (SI). In the present version of the SI it is equal to the electric charge delivered by a 1 ampere constant current in 1 second and to elementary char ...
,
ohm Ohm (symbol Ω) is a unit of electrical resistance named after Georg Ohm. Ohm or OHM may also refer to: People * Georg Ohm (1789–1854), German physicist and namesake of the term ''ohm'' * Germán Ohm (born 1936), Mexican boxer * Jörg Ohm (bor ...
,
farad The farad (symbol: F) is the unit of electrical capacitance, the ability of a body to store an electrical charge, in the International System of Units (SI). It is named after the English physicist Michael Faraday (1791–1867). In SI base unit ...
, and henry. This was achieved at an international conference in Chicago in 1893. The publication of these standards formed the basis of future advances in standardisation in various industries, and in many countries, the definitions were immediately recognized in relevant legislation. During these years, the study of electricity was largely considered to be a subfield of
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which ...
since the early electrical technology was considered electromechanical in nature. The Technische Universität Darmstadt founded the world's first department of electrical engineering in 1882 and introduced the first degree course in electrical engineering in 1883. The first electrical engineering degree program in the United States was started at
Massachusetts Institute of Technology The Massachusetts Institute of Technology (MIT) is a private land-grant research university in Cambridge, Massachusetts. Established in 1861, MIT has played a key role in the development of modern technology and science, and is one of th ...
(MIT) in the physics department under Professor Charles Cross, though it was
Cornell University Cornell University is a private statutory land-grant research university based in Ithaca, New York. It is a member of the Ivy League. Founded in 1865 by Ezra Cornell and Andrew Dickson White, Cornell was founded with the intention to tea ...
to produce the world's first electrical engineering graduates in 1885. The first course in electrical engineering was taught in 1883 in Cornell's Sibley College of Mechanical Engineering and Mechanic Arts. In about 1885 Cornell President Andrew Dickson White established the first Department of Electrical Engineering in the United States. In the same year,
University College London , mottoeng = Let all come who by merit deserve the most reward , established = , type = Public research university , endowment = £143 million (2020) , budget = ...
founded the first chair of electrical engineering in Great Britain. Professor Mendell P. Weinbach at
University of Missouri The University of Missouri (Mizzou, MU, or Missouri) is a public land-grant research university in Columbia, Missouri. It is Missouri's largest university and the flagship of the four-campus University of Missouri System. MU was founded in ...
established the electrical engineering department in 1886. Afterwards, universities and institutes of technology gradually started to offer electrical engineering programs to their students all over the world. During these decades use of electrical engineering increased dramatically. In 1882,
Thomas Edison Thomas Alva Edison (February 11, 1847October 18, 1931) was an American inventor and businessman. He developed many devices in fields such as electric power generation, mass communication, sound recording, and motion pictures. These inventi ...
switched on the world's first large-scale electric power network that provided 110 volts —
direct current Direct current (DC) is one-directional flow of electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor such as a wire, but can also flow through semiconductors, insulators, or ev ...
(DC) — to 59 customers on Manhattan Island in New York City. In 1884,
Sir Charles Parsons Sir Charles Algernon Parsons, (13 June 1854 – 11 February 1931) was an Anglo-Irish engineer, best known for his invention of the compound steam turbine, and as the eponym of C. A. Parsons and Company. He worked as an engineer on ...
invented the
steam turbine A steam turbine is a machine that extracts thermal energy from pressurized steam and uses it to do mechanical work on a rotating output shaft. Its modern manifestation was invented by Charles Parsons in 1884. Fabrication of a modern steam tu ...
allowing for more efficient electric power generation.
Alternating current Alternating current (AC) is an electric current which periodically reverses direction and changes its magnitude continuously with time in contrast to direct current (DC) which flows only in one direction. Alternating current is the form in whic ...
, with its ability to transmit power more efficiently over long distances via the use of
transformer A transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer' ...
s, developed rapidly in the 1880s and 1890s with transformer designs by
Károly Zipernowsky Károly Zipernowsky (born as Carl Zipernowsky, 4 April 1853 in Vienna – 29 November 1942 in Budapest) was an Austrian-born Hungarian electrical engineer. He invented the transformer with his colleagues ( Miksa Déri and Ottó Bláthy) at ...
,
Ottó Bláthy Ottó Titusz Bláthy (11 August 1860 – 26 September 1939) was a Hungarian electrical engineer. In his career, he became the co-inventor of the modern electric transformer, the tension regulator, the AC watt-hour meter.motor capacitor f ...
and
Miksa Déri Miksa Déri (27 October 1854 November, Bács, Kingdom of Hungary, (now: Bač, Serbia) – 3 March 1938) was a Hungarian electrical engineer, inventor, power plant builder. He contributed with his partners Károly Zipernowsky and Ottó Bláth ...
(later called ZBD transformers),
Lucien Gaulard Lucien Gaulard (16 July 1850 – 26 November 1888) invented devices for the transmission of alternating current electrical energy. Biography Gaulard was born in Paris, France in 1850. A power transformer developed by Gaulard of France and Joh ...
, John Dixon Gibbs and William Stanley, Jr. Practical AC motor designs including
induction motor An induction motor or asynchronous motor is an AC electric motor in which the electric current in the rotor needed to produce torque is obtained by electromagnetic induction from the magnetic field of the stator winding. An induction motor ...
s were independently invented by
Galileo Ferraris Galileo Ferraris (31 October 1847 – 7 February 1897) was an Italian university professor, physicist and electrical engineer, one of the pioneers of AC power system and inventor of the induction motor although he never patented his work. Many ...
and
Nikola Tesla Nikola Tesla ( ; ,"Tesla"
''Random House Webster's Unabridged Dictionary''.
; 1856 – 7 January 1943 ...
and further developed into a practical three-phase form by
Mikhail Dolivo-Dobrovolsky Mikhail Osipovich Dolivo-Dobrovolsky (russian: Михаи́л О́сипович Доли́во-Доброво́льский; german: Michail von Dolivo-Dobrowolsky or ''Michail Ossipowitsch Doliwo-Dobrowolski''; – ) was a Russian Empire ...
and
Charles Eugene Lancelot Brown Brown c. 1900 Charles Eugene Lancelot Brown (17 June 1863 – 2 May 1924) was a Swiss businessman and engineer who co-founded Brown, Boveri & Cie (BBC), which later became ASEA Brown Boveri. Biography Brown was born on 17 June 1863 in Winterth ...
. Charles Steinmetz and
Oliver Heaviside Oliver Heaviside FRS (; 18 May 1850 – 3 February 1925) was an English self-taught mathematician and physicist who invented a new technique for solving differential equations (equivalent to the Laplace transform), independently develope ...
contributed to the theoretical basis of alternating current engineering. The spread in the use of AC set off in the United States what has been called the ''
war of the currents The war of the currents was a series of events surrounding the introduction of competing electric power transmission systems in the late 1880s and early 1890s. It grew out of two lighting systems developed in the late 1870s and early 1880s; arc ...
'' between a
George Westinghouse George Westinghouse Jr. (October 6, 1846 – March 12, 1914) was an American entrepreneur and engineer based in Pennsylvania who created the railway air brake and was a pioneer of the electrical industry, receiving his first patent at the age ...
backed AC system and a Thomas Edison backed DC power system, with AC being adopted as the overall standard.


Early 20th century

During the development of radio, many scientists and inventors contributed to radio technology and electronics. The mathematical work of
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and ligh ...
during the 1850s had shown the relationship of different forms of
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
including the possibility of invisible airborne waves (later called "radio waves"). In his classic physics experiments of 1888,
Heinrich Hertz Heinrich Rudolf Hertz ( ; ; 22 February 1857 – 1 January 1894) was a German physicist who first conclusively proved the existence of the electromagnetic waves predicted by James Clerk Maxwell's equations of electromagnetism. The uni ...
proved Maxwell's theory by transmitting
radio wave Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz ( GHz) and below. At 300 GHz, the corresponding wavelength is 1 mm (sho ...
s with a
spark-gap transmitter A spark-gap transmitter is an obsolete type of transmitter, radio transmitter which generates radio waves by means of an electric spark."Radio Transmitters, Early" in Spark-gap transmitters were the first type of radio transmitter, and were the m ...
, and detected them by using simple electrical devices. Other physicists experimented with these new waves and in the process developed devices for transmitting and detecting them. In 1895,
Guglielmo Marconi Guglielmo Giovanni Maria Marconi, 1st Marquis of Marconi (; 25 April 187420 July 1937) was an Italian inventor and electrical engineer, known for his creation of a practical radio wave-based wireless telegraph system. This led to Marconi ...
began work on a way to adapt the known methods of transmitting and detecting these "Hertzian waves" into a purpose built commercial wireless telegraphic system. Early on, he sent wireless signals over a distance of one and a half miles. In December 1901, he sent wireless waves that were not affected by the curvature of the Earth. Marconi later transmitted the wireless signals across the Atlantic between Poldhu, Cornwall, and St. John's, Newfoundland, a distance of .
Millimetre wave 330px, Different lengths as in respect to the electromagnetic spectrum, measured by the metre and its derived scales. The microwave is between 1 meter to 1 millimeter. The millimetre (American and British English spelling differences#-re, -er, ...
communication was first investigated by
Jagadish Chandra Bose Sir Jagadish Chandra Bose (;, ; 30 November 1858 – 23 November 1937) was a biologist, physicist, botanist and an early writer of science fiction. He was a pioneer in the investigation of radio microwave optics, made significant contribution ...
during 18941896, when he reached an extremely high frequency of up to 60 GHz in his experiments. He also introduced the use of
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way ...
junctions to detect radio waves, reprinted in Igor Grigorov, Ed.,
Antentop
', Vol. 2, No.3, pp. 87–96.
when he patented the radio
crystal detector A crystal detector is an obsolete electronic component used in some early 20th century radio receivers that consists of a piece of crystalline mineral which rectifies the alternating current radio signal. It was employed as a detector (dem ...
in 1901. In 1897,
Karl Ferdinand Braun Karl Ferdinand Braun (; 6 June 1850 – 20 April 1918) was a German electrical engineer, inventor, physicist and Nobel laureate in physics. Braun contributed significantly to the development of radio and television technology: he shared the ...
introduced the
cathode ray tube A cathode-ray tube (CRT) is a vacuum tube containing one or more electron guns, which emit electron beams that are manipulated to display images on a phosphorescent screen. The images may represent electrical waveforms ( oscilloscope), ...
as part of an oscilloscope, a crucial enabling technology for electronic television. John Fleming invented the first radio tube, the
diode A diode is a two-terminal electronic component that conducts current primarily in one direction (asymmetric conductance); it has low (ideally zero) resistance in one direction, and high (ideally infinite) resistance in the other. A diod ...
, in 1904. Two years later, Robert von Lieben and Lee De Forest independently developed the amplifier tube, called the triode. In 1920,
Albert Hull Albert Wallace Hull (19 April 1880 – 22 January 1966) was an American physicist and electrical engineer who made contributions to the development of vacuum tubes, and invented the magnetron. He was a member of the National Academy of Sci ...
developed the magnetron which would eventually lead to the development of the
microwave oven A microwave oven (commonly referred to as a microwave) is an electric oven that heats and cooks food by exposing it to electromagnetic radiation in the microwave frequency range. This induces polar molecules in the food to rotate and produce ...
in 1946 by Percy Spencer. In 1934, the British military began to make strides toward
radar Radar is a detection system that uses radio waves to determine the distance (''ranging''), angle, and radial velocity of objects relative to the site. It can be used to detect aircraft, Marine radar, ships, spacecraft, guided missiles, motor v ...
(which also uses the magnetron) under the direction of Dr Wimperis, culminating in the operation of the first radar station at Bawdsey in August 1936. In 1941,
Konrad Zuse Konrad Ernst Otto Zuse (; 22 June 1910 – 18 December 1995) was a German civil engineer, pioneering computer scientist, inventor and businessman. His greatest achievement was the world's first programmable computer; the functional program- ...
presented the Z3, the world's first fully functional and programmable computer using electromechanical parts. In 1943, Tommy Flowers designed and built the
Colossus Colossus, Colossos, or the plural Colossi or Colossuses, may refer to: Statues * Any exceptionally large statue ** List of tallest statues ** :Colossal statues * ''Colossus of Barletta'', a bronze statue of an unidentified Roman emperor * ''Col ...
, the world's first fully functional, electronic, digital and programmable computer. In 1946, the ENIAC (Electronic Numerical Integrator and Computer) of John Presper Eckert and John Mauchly followed, beginning the computing era. The arithmetic performance of these machines allowed engineers to develop completely new technologies and achieve new objectives. In 1948
Claude Shannon Claude Elwood Shannon (April 30, 1916 – February 24, 2001) was an American mathematician, electrical engineer, and cryptographer known as a "father of information theory". As a 21-year-old master's degree student at the Massachusetts I ...
publishes "A Mathematical Theory of Communication" which mathematically describes the passage of information with uncertainty ( electrical noise).


Solid-state electronics

The first working
transistor upright=1.4, gate (G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (pink). A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch ...
was a point-contact transistor invented by John Bardeen and Walter Houser Brattain while working under
William Shockley William Bradford Shockley Jr. (February 13, 1910 – August 12, 1989) was an American physicist and inventor. He was the manager of a research group at Bell Labs that included John Bardeen and Walter Brattain. The three scientists were jointl ...
at the Bell Telephone Laboratories (BTL) in 1947. They then invented the bipolar junction transistor in 1948. While early junction transistors were relatively bulky devices that were difficult to manufacture on a mass-production basis, they opened the door for more compact devices. The first
integrated circuit An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny ...
s were the hybrid integrated circuit invented by Jack Kilby at
Texas Instruments Texas Instruments Incorporated (TI) is an American technology company headquartered in Dallas, Texas, that designs and manufactures semiconductors and various integrated circuits, which it sells to electronics designers and manufacturers globa ...
in 1958 and the monolithic integrated circuit chip invented by Robert Noyce at
Fairchild Semiconductor Fairchild Semiconductor International, Inc. was an American semiconductor company based in San Jose, California. Founded in 1957 as a division of Fairchild Camera and Instrument, it became a pioneer in the manufacturing of transistors and of int ...
in 1959. The
MOSFET The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, the voltage of which d ...
(metal-oxide-semiconductor field-effect transistor, or MOS transistor) was invented by Mohamed Atalla and Dawon Kahng at BTL in 1959. It was the first truly compact transistor that could be miniaturised and mass-produced for a wide range of uses. It revolutionized the
electronics industry The electronics industry is the economic sector that produces electronic devices. It emerged in the 20th century and is today one of the largest global industries. Contemporary society uses a vast array of electronic devices built-in automated or ...
, becoming the most widely used electronic device in the world. The MOSFET made it possible to build high-density integrated circuit chips. The earliest experimental MOS IC chip to be fabricated was built by Fred Heiman and Steven Hofstein at RCA Laboratories in 1962. MOS technology enabled Moore's law, the doubling of transistors on an IC chip every two years, predicted by Gordon Moore in 1965. Silicon-gate MOS technology was developed by Federico Faggin at Fairchild in 1968. Since then, the MOSFET has been the basic building block of modern electronics. The mass-production of silicon MOSFETs and MOS integrated circuit chips, along with continuous
MOSFET scaling The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, the voltage of which d ...
miniaturization at an exponential pace (as predicted by Moore's law), has since led to revolutionary changes in technology, economy, culture and thinking. The Apollo program which culminated in landing astronauts on the Moon with
Apollo 11 Apollo 11 (July 16–24, 1969) was the American spaceflight that first landed humans on the Moon. Commander Neil Armstrong and lunar module pilot Buzz Aldrin landed the Apollo Lunar Module ''Eagle'' on July 20, 1969, at 20:17 UTC, ...
in 1969 was enabled by
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeedin ...
's adoption of advances in
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way ...
electronic technology The field of electronics is a branch of physics and electrical engineering that deals with the emission, behaviour and effects of electrons using electronic devices. Electronics uses active devices to control electron flow by amplificatio ...
, including MOSFETs in the
Interplanetary Monitoring Platform Interplanetary Monitoring Platform was a program managed by the NASA Goddard Space Flight Center in Greenbelt, Maryland, as part of the Explorers program, with the primary objectives of investigation of interplanetary plasma and the interplanetary ...
(IMP) and silicon integrated circuit chips in the
Apollo Guidance Computer The Apollo Guidance Computer (AGC) was a digital computer produced for the Apollo program that was installed on board each Apollo command module (CM) and Apollo Lunar Module (LM). The AGC provided computation and electronic interfaces for guidanc ...
(AGC). The development of MOS integrated circuit technology in the 1960s led to the invention of the
microprocessor A microprocessor is a computer processor where the data processing logic and control is included on a single integrated circuit, or a small number of integrated circuits. The microprocessor contains the arithmetic, logic, and control circ ...
in the early 1970s. The first single-chip microprocessor was the Intel 4004, released in 1971. The Intel 4004 was designed and realized by Federico Faggin at Intel with his silicon-gate MOS technology, along with Intel's Marcian Hoff and
Stanley Mazor Stanley Mazor is an American microelectronics engineer who was born on 22 October 1941 in Chicago, Illinois. He is one of the co-inventors of the world's first microprocessor architecture, the Intel 4004, together with Ted Hoff, Masatoshi S ...
and Busicom's Masatoshi Shima. The microprocessor led to the development of
microcomputer A microcomputer is a small, relatively inexpensive computer having a central processing unit (CPU) made out of a microprocessor. The computer also includes memory and input/output (I/O) circuitry together mounted on a printed circuit board (PC ...
s and personal computers, and the microcomputer revolution.


Subfields

One of the properties of electricity is that it is very useful for energy transmission as well as for information transmission. These were also the first areas in which electrical engineering was developed. Today electrical engineering has many subdisciplines, the most common of which are listed below. Although there are electrical engineers who focus exclusively on one of these subdisciplines, many deal with a combination of them. Sometimes certain fields, such as
electronic engineering Electronics engineering is a sub-discipline of electrical engineering which emerged in the early 20th century and is distinguished by the additional use of active components such as semiconductor devices to amplify and control electric current ...
and computer engineering, are considered disciplines in their own right.


Power and energy

Power & Energy engineering deals with the generation, transmission, and
distribution Distribution may refer to: Mathematics * Distribution (mathematics), generalized functions used to formulate solutions of partial differential equations *Probability distribution, the probability of a particular value or value range of a vari ...
of electricity as well as the design of a range of related devices. These include
transformer A transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer' ...
s,
electric generator In electricity generation, a generator is a device that converts motive power ( mechanical energy) or fuel-based power (chemical energy) into electric power for use in an external circuit. Sources of mechanical energy include steam turbines, g ...
s,
electric motor An electric motor is an electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate f ...
s, high voltage engineering, and power electronics. In many regions of the world, governments maintain an electrical network called a
power grid An electrical grid is an interconnected network for electricity delivery from producers to consumers. Electrical grids vary in size and can cover whole countries or continents. It consists of:Kaplan, S. M. (2009). Smart Grid. Electrical Power ...
that connects a variety of generators together with users of their energy. Users purchase electrical energy from the grid, avoiding the costly exercise of having to generate their own. Power engineers may work on the design and maintenance of the power grid as well as the power systems that connect to it. Such systems are called ''on-grid'' power systems and may supply the grid with additional power, draw power from the grid, or do both. Power engineers may also work on systems that do not connect to the grid, called ''off-grid'' power systems, which in some cases are preferable to on-grid systems. The future includes Satellite controlled power systems, with feedback in real time to prevent power surges and prevent blackouts.


Telecommunications

Telecommunications engineering focuses on the transmission of information across a communication channel such as a coax cable,
optical fiber An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass ( silica) or plastic to a diameter slightly thicker than that of a human hair Hair is a protein filament that grows ...
or
free space A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or " void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often ...
. Transmissions across free space require information to be encoded in a carrier signal to shift the information to a carrier frequency suitable for transmission; this is known as
modulation In electronics and telecommunications, modulation is the process of varying one or more properties of a periodic waveform, called the '' carrier signal'', with a separate signal called the ''modulation signal'' that typically contains informat ...
. Popular analog modulation techniques include
amplitude modulation Amplitude modulation (AM) is a modulation technique used in electronic communication, most commonly for transmitting messages with a radio wave. In amplitude modulation, the amplitude (signal strength) of the wave is varied in proportion to ...
and
frequency modulation Frequency modulation (FM) is the encoding of information in a carrier wave by varying the instantaneous frequency of the wave. The technology is used in telecommunications, radio broadcasting, signal processing, and computing. In analog ...
. The choice of modulation affects the cost and performance of a system and these two factors must be balanced carefully by the engineer. Once the transmission characteristics of a system are determined, telecommunication engineers design the
transmitter In electronics and telecommunications, a radio transmitter or just transmitter is an electronic device which produces radio waves with an antenna. The transmitter itself generates a radio frequency alternating current, which is applied to the ...
s and receivers needed for such systems. These two are sometimes combined to form a two-way communication device known as a transceiver. A key consideration in the design of transmitters is their power consumption as this is closely related to their signal strength. Typically, if the power of the transmitted signal is insufficient once the signal arrives at the receiver's antenna(s), the information contained in the signal will be corrupted by
noise Noise is unwanted sound considered unpleasant, loud or disruptive to hearing. From a physics standpoint, there is no distinction between noise and desired sound, as both are vibrations through a medium, such as air or water. The difference aris ...
, specifically static.


Control engineering

Control engineering focuses on the modeling of a diverse range of dynamic systems and the design of
controller Controller may refer to: Occupations * Controller or financial controller, or in government accounting comptroller, a senior accounting position * Controller, someone who performs agent handling in espionage * Air traffic controller, a person w ...
s that will cause these systems to behave in the desired manner. To implement such controllers, electronics control engineers may use
electronic circuit An electronic circuit is composed of individual electronic components, such as resistors, transistors, capacitors, inductors and diodes, connected by conductive wires or traces through which electric current can flow. It is a type of electric ...
s,
digital signal processor A digital signal processor (DSP) is a specialized microprocessor chip, with its architecture optimized for the operational needs of digital signal processing. DSPs are fabricated on MOS integrated circuit chips. They are widely used in audio s ...
s, microcontrollers, and
programmable logic controller A programmable logic controller (PLC) or programmable controller is an industrial computer that has been ruggedized and adapted for the control of manufacturing processes, such as assembly lines, machines, robotic devices, or any activity t ...
s (PLCs). Control engineering has a wide range of applications from the flight and propulsion systems of commercial airliners to the
cruise control Cruise control (also known as speed control, cruise command, autocruise, or tempomat) is a system that automatically controls the speed of a motor vehicle. The system is a servomechanism that takes over the throttle of the car to maintain a ...
present in many modern
automobile A car or automobile is a motor vehicle with wheels. Most definitions of ''cars'' say that they run primarily on roads, seat one to eight people, have four wheels, and mainly transport people instead of goods. The year 1886 is regarded ...
s. It also plays an important role in industrial automation. Control engineers often use
feedback Feedback occurs when outputs of a system are routed back as inputs as part of a chain of cause-and-effect that forms a circuit or loop. The system can then be said to ''feed back'' into itself. The notion of cause-and-effect has to be handled ...
when designing
control system A control system manages, commands, directs, or regulates the behavior of other devices or systems using control loops. It can range from a single home heating controller using a thermostat controlling a domestic boiler to large industrial ...
s. For example, in an
automobile A car or automobile is a motor vehicle with wheels. Most definitions of ''cars'' say that they run primarily on roads, seat one to eight people, have four wheels, and mainly transport people instead of goods. The year 1886 is regarded ...
with
cruise control Cruise control (also known as speed control, cruise command, autocruise, or tempomat) is a system that automatically controls the speed of a motor vehicle. The system is a servomechanism that takes over the throttle of the car to maintain a ...
the vehicle's
speed In everyday use and in kinematics, the speed (commonly referred to as ''v'') of an object is the magnitude of the change of its position over time or the magnitude of the change of its position per unit of time; it is thus a scalar quant ...
is continuously monitored and fed back to the system which adjusts the motor's power output accordingly. Where there is regular feedback,
control theory Control theory is a field of mathematics that deals with the control system, control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the application of system inputs to drive ...
can be used to determine how the system responds to such feedback. Control engineers also work in
robotics Robotics is an interdisciplinary branch of computer science and engineering. Robotics involves design, construction, operation, and use of robots. The goal of robotics is to design machines that can help and assist humans. Robotics integrat ...
to design autonomous systems using control algorithms which interpret sensory feedback to control actuators that move robots such as
autonomous vehicle Vehicular automation involves the use of mechatronics, artificial intelligence, and multi-agent systems to assist the operator of a vehicle (car, aircraft, watercraft, or otherwise).Hu, J.; Bhowmick, P.; Lanzon, A.,Group Coordinated Control ...
s, autonomous drones and others used in a variety of industries.


Electronics

Electronic engineering involves the design and testing of
electronic circuit An electronic circuit is composed of individual electronic components, such as resistors, transistors, capacitors, inductors and diodes, connected by conductive wires or traces through which electric current can flow. It is a type of electric ...
s that use the properties of
component Circuit Component may refer to: •Are devices that perform functions when they are connected in a circuit.   In engineering, science, and technology Generic systems * System components, an entity with discrete structure, such as an assem ...
s such as
resistor A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active e ...
s, capacitors, inductors,
diode A diode is a two-terminal electronic component that conducts current primarily in one direction (asymmetric conductance); it has low (ideally zero) resistance in one direction, and high (ideally infinite) resistance in the other. A diod ...
s, and
transistor upright=1.4, gate (G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (pink). A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch ...
s to achieve a particular functionality. The tuned circuit, which allows the user of a radio to electronic filter, filter out all but a single station, is just one example of such a circuit. Another example to research is a pneumatic signal conditioner. Prior to the Second World War, the subject was commonly known as ''radio engineering'' and basically was restricted to aspects of communications and
radar Radar is a detection system that uses radio waves to determine the distance (''ranging''), angle, and radial velocity of objects relative to the site. It can be used to detect aircraft, Marine radar, ships, spacecraft, guided missiles, motor v ...
, radio, commercial radio, and television, early television. Later, in post-war years, as consumer devices began to be developed, the field grew to include modern television, audio systems, computers, and
microprocessor A microprocessor is a computer processor where the data processing logic and control is included on a single integrated circuit, or a small number of integrated circuits. The microprocessor contains the arithmetic, logic, and control circ ...
s. In the mid-to-late 1950s, the term ''radio engineering'' gradually gave way to the name ''electronic engineering''. Before the invention of the
integrated circuit An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny ...
in 1959, electronic circuits were constructed from discrete components that could be manipulated by humans. These discrete circuits consumed much space and electric power, power and were limited in speed, although they are still common in some applications. By contrast,
integrated circuit An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny ...
s packed a large number—often millions—of tiny electrical components, mainly
transistor upright=1.4, gate (G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (pink). A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch ...
s, into a small chip around the size of a coin. This allowed for the powerful computers and other electronic devices we see today.


Microelectronics and nanoelectronics

Microelectronics engineering deals with the design and microfabrication of very small electronic circuit components for use in an
integrated circuit An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny ...
or sometimes for use on their own as a general electronic component. The most common microelectronic components are
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way ...
transistor upright=1.4, gate (G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (pink). A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch ...
s, although all main electronic components (
resistor A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active e ...
s, capacitors etc.) can be created at a microscopic level. Nanoelectronics is the further scaling of devices down to nanometer levels. Modern devices are already in the nanometer regime, with below 100 nm processing having been standard since around 2002. Microelectronic components are created by chemically fabricating wafers of semiconductors such as silicon (at higher frequencies, compound semiconductors like gallium arsenide and indium phosphide) to obtain the desired transport of electronic charge and control of current. The field of microelectronics involves a significant amount of chemistry and material science and requires the electronic engineer working in the field to have a very good working knowledge of the effects of quantum mechanics.


Signal processing

Signal processing deals with the analysis and manipulation of signal (electrical engineering), signals. Signals can be either analog signal, analog, in which case the signal varies continuously according to the information, or Digital signal (signal processing), digital, in which case the signal varies according to a series of discrete values representing the information. For analog signals, signal processing may involve the amplifier, amplification and Filter (signal processing), filtering of audio signals for audio equipment or the
modulation In electronics and telecommunications, modulation is the process of varying one or more properties of a periodic waveform, called the '' carrier signal'', with a separate signal called the ''modulation signal'' that typically contains informat ...
and demodulation of signals for telecommunications. For digital signals, signal processing may involve the Data compression, compression, error detection and error correction of digitally sampled signals. Signal Processing is a very mathematically oriented and intensive area forming the core of digital signal processing and it is rapidly expanding with new applications in every field of electrical engineering such as communications, control, radar, audio engineering, broadcast engineering, power electronics, and biomedical engineering as many already existing analog systems are replaced with their digital counterparts. Analog signal processing is still important in the design of many
control system A control system manages, commands, directs, or regulates the behavior of other devices or systems using control loops. It can range from a single home heating controller using a thermostat controlling a domestic boiler to large industrial ...
s. DSP processor ICs are found in many types of modern electronic devices, such as digital television sets, radios, Hi-Fi audio equipment, mobile phones, Portable Media Player, multimedia players, camcorders and digital cameras, automobile control systems, noise cancelling headphones, digital spectrum analyzers, missile guidance systems,
radar Radar is a detection system that uses radio waves to determine the distance (''ranging''), angle, and radial velocity of objects relative to the site. It can be used to detect aircraft, Marine radar, ships, spacecraft, guided missiles, motor v ...
systems, and telematics systems. In such products, DSP may be responsible for noise reduction, speech recognition or Speech synthesis, synthesis, Codec, encoding or decoding digital media, wirelessly Transceiver, transmitting or receiving data, triangulating positions using GPS, and other kinds of image processing, video processing, audio signal processing, audio processing, and speech processing.


Instrumentation

Instrumentation engineering deals with the design of devices to measure physical quantities such as pressure, Volumetric flow rate, flow, and temperature. The design of such instruments requires a good understanding of
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which ...
that often extends beyond electromagnetism, electromagnetic theory. For example, flight instruments measure variables such as wind speed and altitude to enable pilots the control of aircraft analytically. Similarly, thermocouples use the Peltier-Seebeck effect to measure the temperature difference between two points. Often instrumentation is not used by itself, but instead as the sensors of larger electrical systems. For example, a thermocouple might be used to help ensure a furnace's temperature remains constant. For this reason, instrumentation engineering is often viewed as the counterpart of control.


Computers

Computer engineering deals with the design of computers and computer systems. This may involve the design of new computer hardware, hardware. Computer engineers may also work on a system's software. However, the design of complex software systems is often the domain of software engineering, which is usually considered a separate discipline. Desktop computers represent a tiny fraction of the devices a computer engineer might work on, as computer-like architectures are now found in a range of embedded systems, embedded devices including video game consoles and DVD players. Computer engineers are involved in many hardware and software aspects of computing. Robots are one of the applications of computer engineering.


Photonics and optics

Photonics and
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultrav ...
deals with the generation, transmission, amplification, modulation, detection, and analysis of
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
. The application of optics deals with design of optical instruments such as lenses, microscopes, telescopes, and other equipment that uses the properties of
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
. Other prominent applications of optics include electro-optical sensors and measurement systems, lasers, fiber optic communication systems, and optical disc systems (e.g. CD and DVD). Photonics builds heavily on optical technology, supplemented with modern developments such as optoelectronics (mostly involving
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way ...
s), laser systems, optical amplifiers and novel materials (e.g. metamaterials).


Related disciplines

Mechatronics is an engineering discipline which deals with the convergence of electrical and machine, mechanical systems. Such combined systems are known as electromechanical systems and have widespread adoption. Examples include automation, automated manufacturing systems, HVAC, heating, ventilation and air-conditioning systems, and various subsystems of aircraft and
automobile A car or automobile is a motor vehicle with wheels. Most definitions of ''cars'' say that they run primarily on roads, seat one to eight people, have four wheels, and mainly transport people instead of goods. The year 1886 is regarded ...
s. ''Electronic systems design'' is the subject within electrical engineering that deals with the multi-disciplinary design issues of complex electrical and mechanical systems. The term ''mechatronics'' is typically used to refer to macroscopic systems but Futures studies, futurists have predicted the emergence of very small electromechanical devices. Already, such small devices, known as Microelectromechanical systems (MEMS), are used in automobiles to tell airbags when to deploy, in digital projectors to create sharper images, and in inkjet printers to create nozzles for high definition printing. In the future it is hoped the devices will help build tiny implantable medical devices and improve optical communication. In Aerospace engineering and
robotics Robotics is an interdisciplinary branch of computer science and engineering. Robotics involves design, construction, operation, and use of robots. The goal of robotics is to design machines that can help and assist humans. Robotics integrat ...
, an example is the most recent electric propulsion and ion propulsion.


Education

Electrical engineers typically possess an academic degree with a major in electrical engineering, electronics engineering, electrical engineering technology, or electrical and electronic engineering. The same fundamental principles are taught in all programs, though emphasis may vary according to title. The length of study for such a degree is usually four or five years and the completed degree may be designated as a Bachelor of Science in Electrical/Electronics Engineering Technology, Bachelor of Engineering, Bachelor of Science, Bachelor of Technology, or Bachelor of Applied Science, depending on the university. The bachelor's degree generally includes units covering
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which ...
, mathematics, computer science, project management, and a list of electrical engineering topics, variety of topics in electrical engineering. Initially such topics cover most, if not all, of the subdisciplines of electrical engineering. At some schools, the students can then choose to emphasize one or more subdisciplines towards the end of their courses of study. At many schools, electronic engineering is included as part of an electrical award, sometimes explicitly, such as a Bachelor of Engineering (Electrical and Electronic), but in others, electrical and electronic engineering are both considered to be sufficiently broad and complex that separate degrees are offered. Some electrical engineers choose to study for a postgraduate degree such as a Master of Engineering/Master of Science (MEng/MSc), a Master of Engineering Management, a Doctor of Philosophy (PhD) in Engineering, an Engineering Doctorate (Eng.D.), or an Engineer's degree. The master's and engineer's degrees may consist of either research, coursework or a mixture of the two. The Doctor of Philosophy and Engineering Doctorate degrees consist of a significant research component and are often viewed as the entry point to academia. In the United Kingdom and some other European countries, Master of Engineering is often considered to be an undergraduate degree of slightly longer duration than the Bachelor of Engineering rather than a standalone postgraduate degree.


Professional practice

In most countries, a bachelor's degree in engineering represents the first step towards
professional certification Professional certification, trade certification, or professional designation, often called simply ''certification'' or ''qualification'', is a designation earned by a person to assure qualification to perform a job or task. Not all certifications ...
and the degree program itself is certified by a professional body. After completing a certified degree program the engineer must satisfy a range of requirements (including work experience requirements) before being certified. Once certified the engineer is designated the title of Professional Engineer (in the United States, Canada and South Africa), Chartered engineer or Incorporated Engineer (in India, Pakistan, the United Kingdom, Ireland and Zimbabwe), Chartered Professional Engineer (in Australia and New Zealand) or European Engineer (in much of the European Union). The advantages of licensure vary depending upon location. For example, in the United States and Canada "only a licensed engineer may seal engineering work for public and private clients". This requirement is enforced by state and provincial legislation such as Quebec's Engineers Act. In other countries, no such legislation exists. Practically all certifying bodies maintain a ethical code, code of ethics that they expect all members to abide by or risk expulsion. In this way these organizations play an important role in maintaining ethical standards for the profession. Even in jurisdictions where certification has little or no legal bearing on work, engineers are subject to contract law. In cases where an engineer's work fails he or she may be subject to the negligence, tort of negligence and, in extreme cases, the charge of criminal negligence. An engineer's work must also comply with numerous other rules and regulations, such as building codes and legislation pertaining to environmental law. Professional bodies of note for electrical engineers include the
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers (IEEE) is a 501(c)(3) professional association for electronic engineering and electrical engineering (and associated disciplines) with its corporate office in New York City and its operation ...
(IEEE) and the Institution of Engineering and Technology (IET). The IEEE claims to produce 30% of the world's literature in electrical engineering, has over 360,000 members worldwide and holds over 3,000 conferences annually. The IET publishes 21 journals, has a worldwide membership of over 150,000, and claims to be the largest professional engineering society in Europe. Obsolescence of technical skills is a serious concern for electrical engineers. Membership and participation in technical societies, regular reviews of periodicals in the field and a habit of continued learning are therefore essential to maintaining proficiency. An MIET(Member of the Institution of Engineering and Technology) is recognised in Europe as an Electrical and computer (technology) engineer. In Australia, Canada, and the United States electrical engineers make up around 0.25% of the labor force.


Tools and work

From the Global Positioning System to electricity generation, electric power generation, electrical engineers have contributed to the development of a wide range of technologies. They design, develop, test, and supervise the deployment of electrical systems and electronic devices. For example, they may work on the design of telecommunication systems, the operation of power station, electric power stations, the lighting and electrical wiring, wiring of buildings, the design of home appliance, household appliances, or the electrical control theory, control of industrial machinery. Fundamental to the discipline are the sciences of
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which ...
and mathematics as these help to obtain both a Qualitative data, qualitative and Quantity, quantitative description of how such systems will work. Today most engineering work involves the use of computers and it is commonplace to use computer-aided design programs when designing electrical systems. Nevertheless, the ability to sketch ideas is still invaluable for quickly communicating with others. Although most electrical engineers will understand basic circuit theory (that is the interactions of elements such as
resistor A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active e ...
s, capacitors,
diode A diode is a two-terminal electronic component that conducts current primarily in one direction (asymmetric conductance); it has low (ideally zero) resistance in one direction, and high (ideally infinite) resistance in the other. A diod ...
s,
transistor upright=1.4, gate (G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (pink). A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch ...
s, and inductors in a circuit), the theories employed by engineers generally depend upon the work they do. For example, quantum mechanics and solid state physics might be relevant to an engineer working on VLSI (the design of integrated circuits), but are largely irrelevant to engineers working with macroscopic electrical systems. Even circuit theory may not be relevant to a person designing telecommunication systems that use commercial off-the-shelf, off-the-shelf components. Perhaps the most important technical skills for electrical engineers are reflected in university programs, which emphasize numeracy, strong numerical skills, computer literacy, and the ability to understand the technical terminology, technical language and concepts that relate to electrical engineering. A wide range of instrumentation is used by electrical engineers. For simple control circuits and alarms, a basic multimeter measuring voltage, electric current, current, and electrical resistance, resistance may suffice. Where time-varying signals need to be studied, the oscilloscope is also an ubiquitous instrument. In RF engineering and high frequency telecommunications, spectrum analyzers and Network analyzer (electrical), network analyzers are used. In some disciplines, safety can be a particular concern with instrumentation. For instance, medical electronics designers must take into account that much lower voltages than normal can be dangerous when electrodes are directly in contact with internal body fluids. Power transmission engineering also has great safety concerns due to the high voltages used; although
voltmeter A voltmeter is an instrument used for measuring electric potential difference between two points in an electric circuit. It is connected in parallel. It usually has a high resistance so that it takes negligible current from the circuit. ...
s may in principle be similar to their low voltage equivalents, safety and calibration issues make them very different. Many disciplines of electrical engineering use tests specific to their discipline. Audio electronics engineers use audio system measurements, audio test sets consisting of a signal generator and a meter, principally to measure level but also other parameters such as harmonic distortion and noise (electronics), noise. Likewise, information technology have their own test sets, often specific to a particular data format, and the same is true of television broadcasting. For many engineers, technical work accounts for only a fraction of the work they do. A lot of time may also be spent on tasks such as discussing proposals with clients, preparing budgets and determining schedule (project management), project schedules. Many senior engineers manage a team of technicians or other engineers and for this reason project management skills are important. Most engineering projects involve some form of documentation and technical writing, strong written communication skills are therefore very important. The Office, workplaces of engineers are just as varied as the types of work they do. Electrical engineers may be found in the pristine lab environment of a fabrication plant, on board a Naval ship, the offices of a consulting firm or on site at a mine. During their working life, electrical engineers may find themselves supervising a wide range of individuals including scientists, electricians, computer programmers, and other engineers. Electrical engineering has an intimate relationship with the physical sciences. For instance, the physicist Lord Kelvin played a major role in the engineering of the first transatlantic telegraph cable. Conversely, the engineer
Oliver Heaviside Oliver Heaviside FRS (; 18 May 1850 – 3 February 1925) was an English self-taught mathematician and physicist who invented a new technique for solving differential equations (equivalent to the Laplace transform), independently develope ...
produced major work on the mathematics of transmission on telegraph cables. Electrical engineers are often required on major science projects. For instance, large particle accelerators such as CERN need electrical engineers to deal with many aspects of the project including the power distribution, the instrumentation, and the manufacture and installation of the superconducting electromagnets.Martini, p. 179


See also

*Barnacle (slang) *Electrical Technologist *Electronic design automation *Glossary of electrical and electronics engineering *Index of electrical engineering articles *Information engineering (field), Information engineering *
International Electrotechnical Commission The International Electrotechnical Commission (IEC; in French: ''Commission électrotechnique internationale'') is an international standards organization that prepares and publishes international standards for all electrical, electronic and ...
(IEC) *List of electrical engineers *List of engineering branches *List of mechanical, electrical and electronic equipment manufacturing companies by revenue *List of Russian electrical engineers *Occupations in electrical/electronics engineering *Outline of electrical engineering *Timeline of electrical and electronic engineering


Notes


References

;Bibliography * * * * * * * * * * * * * * * * * * * * * * * *Martini, L., "BSCCO-2233 multilayered conductors", in ''Superconducting Materials for High Energy Colliders'', pp. 173–181, World Scientific, 2001 . * * * * * * * *Schmidt, Rüdiger, "The LHC accelerator and its challenges", in Kramer M.; Soler, F.J.P. (eds), ''Large Hadron Collider Phenomenology'', pp. 217–250, CRC Press, 2004 . * * * * * * * * * * * *


Further reading

* * * * * * * * * * * * * *


External links


International Electrotechnical Commission (IEC)
in-depth look at Electrical Engineering – online courses with video lectures.
IEEE Global History Network
A wiki-based site with many resources about the history of IEEE, its members, their professions and electrical and informational technologies and sciences. {{Authority control Electrical engineering, Electronic engineering Computer engineering Electrical and computer engineering Engineering disciplines